On a Schur complement inequality for the Hadamard product of certain totally nonnegative matrices
نویسندگان
چکیده
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L. Markham and R.L. Smith for tridiagonal totally nonnegative matrices [T.L. Markham and R.L. Smith. A Schur complement inequality for certain P-matrices. Linear Algebra and its Applications, 281:33–41, 1998.]. This result improves the refinement and range of applications for these inequalities.
منابع مشابه
Ela on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کاملEla Bounds on the Spectral Radius of a Hadamard Product of Nonnegative or Positive Semidefinite Matrices
X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.
متن کاملBounds on the spectral radius of a Hadamard product of nonnegative or positive semidefinite matrices
X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملSchur Complements and Determinant Inequalities
This paper is focused on the applications of Schur complements to determinant inequalities. It presents a monotonic characterization of Schur complements in the L öwner partial ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained. Meanwhile, it presents matrix identities and determinant inequalities involving positive semidefinite matrices and extends ...
متن کامل